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Analytical approach to traffic jams 

M Kaulke and S Trimper 
Martin-Luther-UnivenitS Halle, Fachbereich Physik, Fnedemann-Bach-Pla& D.06108 Halle, 
Germany 

Received 31 May 1995 

Abstract. The traffic-flow problem in two dimensions is formulated as a three-state model on 
a square lattice in terms of Pauli operators. Using a Fock-space representation of the mater 
equation we get the Liouvillian for the problem with asymmetric exclusion. Three different 
realizations, symmetric, right-before-left model and an exchange model will be analysed within 
the mean-field approximation (MFA). The resulting kinetic equations for the average occupation 
number of cars in the upward and sideward directions are coupled. The average velocity can 
be calculated in MFA. It results in a jamming transition that depends on the total concentration 
of can. 

Traffic problems have been studied in recent years using the availability of powerful 
supercomputers. Such traffic simulations based on hydrodynamic models [1-4] have 
provided much insight and are in good agreement with experiments for simple systems. 
However, the simulation of the underlying collective behaviour of the traffic flow in a whole 
city requires a many body description for classical systems with a stochastic dynamics. 

B i h h  etal [6] have applied a three-state cellular automaton model to simulate a simple 
model that describes traffic flow in two dimensions. In varying the system size from 16 x 16 
to 512 x 512 particles (cars) they found a critical concentration at which a sharp transition 
occurs from a phase of freely moving cars to a phase where all cars are stopped. The critical 
concentration was determined to be pc 

In a series of papers Nagatani 17-14] has studied in detail the traffic Row including the 
jamming transition proposed originally by Biham etal [6]. He confirmed the results given 
in [6]. Furthermore, he discussed some extensions of the model: 

Whereas all the previous studies are based above  all on a numerical treatment, here 
we present an analytical approach using a Fock-space formulation of the problem. Such a 
formulation was developed originally in terms.of Bose operators to simulate the dynamical 
behaviour of the system starting with the master equation [IS-201. An extension to systems 
with exclusion was proposed recently in [22] where any double occupancy at a certain 
lattice point is excluded. 

There are also other papers in which the problem is discussed with various methods 
[15-171 different to om.  

To be specific we discretize the system by introducing a square lattice in two dimensions. 
Each of the lattice sites is in either one of three states: containing a car driving from left to 
right, denoted by A, a car driving upwards (D), or being empty (E). The set of the states of 
the whole lattice are characterized by the state vector n, where ni, gives the state of site 
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0.31 for the largest system. 
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i, 01 of the lattice. Here, i counts the sites from the bottom to the top of the lattice whereas 
01 numbers the lattice sites from left to right. Periodic boundary conditions are assumed. 

We remark here that there is a similar realization by a three-candidate voter model 
discussed in [5]. 

In a first version the dynamics of the system is governed by the following rules. While 
a D car can jump with the rate V I  in vertical direction, an A car jumps with the rate vz 
in horizontal direction. In contrast to [6], the dynamics is not controlled by a traffic light 
such that the A cars move only in even time steps and the D cars move only in odd time 
step. Here, we consider the collective behaviour of simultaneous asymmetric hopping under 
exclusive conditions, that means any double occupancy of a lattice site is forbidden. 

To include the restriction we transform the underlying master equation into an equation 
in a Fock space where the corresponding evolution operator is expressed by Pauli operators. 

The master equation reads 

(1) 
where P is the probability of a transition from an empty lattice at t = 0 to the state 
characterized by n at time t and L’ is an operator specified below. 

Following Doi [18] (cf also [22]), the probability distribution P(n, f )  can be related to 
a state vector IF@)) in a Fock-space according to P ( n ,  t )  = (?%IF@)) with the basisvectors 
In). The master equation can be transformed to an equivalent equation in a Fock space 

The operator L’ in (1) is mapped onto the operator i given in a second quantized form 
with U ,  at and d, dt being the annihilation and creation operators for the A and D cars, 
respectively. ~ 

Usually L is expressed in terms of creation and annhiliation operators which satisfy Bose 
commutation rules [1&21]. In our problem where cars can jump with a certain probability 
from lattice site to lattice site one has to take into account the exclusion principle. The 
method can be extended to the case of restricted occupation numbers per lattice site [22-26]. 
To preserve in addition the res@iction of the occupation number in the underlying dynamical 
equations, the commutation rules of the operators a and d are those of Pauli operators: 
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& P ( n ,  t )  = L’P(n, r )  

a m ) )  = hw). (2) 

[dim d$ = &,j&p(l -=;&id 
[dim, d j ~ l  = [dk,  dkl = 0 (3) 
di‘, = (dk)* = 0 

and similarly for a and ut., As the operators a and d act in different subspaces, all the 
commutators between them disappear. 

The relation between the quantum formalism and the probability approach based upon 
the master equation can be found by expanding the vector IF(T))  with respect to the 
basisvectors of the Fock space 

Iw)) = Cp(n,r)ln>. (4) 

(&t)) = ~ ( n ,  tp (n)  = (s l2 lF(t)) .  (5) 

ni 

As was shown by Doi [18] the average of a physical quantity B ( n )  is given by the average 
of the corresponding operator B(t )  

ni 

This rule also remains valid in the case of Pauli operators [22] with the notation (SI = 
(01 exp xi dr where di is an annihilation operator. We remark that the normalization 
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condition is manisfested in the relation (s lF(t))  = 1 and the sum-vector (SI can be expressed 
by (SI = C(nl. The evolution equation for an operator fi can be written 

at(& = elrfi, illF(t)). (6) 
Here we have used the relation (sli = 0. The dynamics of the classical problem is 
determined purely by the commutation rules of the underlying operators. 

We consider three kinds of models distinguished only by the form of the evolution 
operator i in (2). In two versions the operator consists of two parts, one for the D cars and 
the other for the A cars. 

L = Lo + LA. (7) 

As a first realization, called symmetric model, the evolution operator is defined in 

For this situation we get 

In a last version we take also into consideration the exchange operator LAD, LDA. 

accordance with the dynamics defined above. 

(8) 
in 

LA = vz C[a!uaia-i - ~ i o l ~ , , ~ i ~ _ l a i n - l l d i ~ d ; ~ d ~ - ~ n  i i  t . di ;-lo. 
in 

The terms in brackets make sure that a car of one type can only move if the,starting site is 
indeed occupied and the termination point is empty. The additional terms allow only jumps 
to sites to which at the same~.time cars of the other type do not jump. 

Using the operator (8) and equations (61, (3) for the average of the particle number 
operator Dim = djadi, we get 

a,(Di,) = ~ ~ [ ( D i - d l  - Ci, + D i d i n ) U  - Aia-1)) 

-(Di.z(l - Ci+~a + D i + d i + d ( l  - A i + ~ a - l ) ) I .  (9) 

The corresponding equation for the A car reads 

&(Ai,)  = Vz[(Aie-l(1 - Cia + Diu + Ain)(l - Di-la) 

-Aio(l + Die + D i - ~ a + ~ ) ) l  (10) 

where Cl, = Di, + Ai, is the total particle number operator at a lattice site. 
Since the change of the mean local occupation number at one lattice site consists of 

two parts, namely a local incoming current ind a local outgoing current of cars, we define 
local current densities for each type of car: 

.d 

( 1 1 )  
J i - l + j m  = VI (Di-la(1 - Cin + DiuAim)(l - A“I) )  
.a VZ (Ai=-1 (1 - Cm 4- Di0Ai.d ( 1  - Di-1.z)) . 

In analogy with the relation j = pv we define local mean velocities 

All further calculations will be performed in the mean-field limit where the car densities 
should be normalized separately to unity. We have to average locally over all occupation 
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configurations at one lattice site, and furthermore over all lattice sites in order to get the 
global mean velocities. The result is 
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Theaveragevelocityv= Z(ua+ud) I hastheformu=-clp3+cZpZ-cC3p+cq withc; ) O  
which is qualitatively in agreement with the shape of the graphs given in [ I l l .  

vanishes 
The jamming transition occurs at a critical concentration pc where the mean velocity 

o =  U1 [l - Pc (1 + f) + P : f z + P , 3 f Z ( l -  f)] 

+vz [I - P c  (2+ f) + P:(1 - fY+ Pff(1  - fY] (14) 
where pa = fp. This equation can k~ solved exactly. Here we consider the limit where 
one hopping rate is very small compared to the other one. Thus we get 

Let us remark that equations (14),(15) only hold provided both concentrations pa or 
pa are greater than zero. If one concentration vanishes, the corresponding current and the 
velocity also has to vanish and the critical concentration becomes unity. 

As a further realization we have considered the ‘right-before-left’ caSe defined by the 
evolution operator 

LD = VI x[di,d;-1, t - di.d~dit_ladi-lola;~ai, t 

LA = VZ C[a/uaior-l - a;.a;,aia-lai,-~ldi,di,d~-l, t t  t . dt i-1- , 
(16) 

iU 

;U 

This operator favours the D cars at a crossing point. An A-type car has to wait before it 
can jump to site (i, a). 

Using the same approximation as before we get the mean velocities 

Obviously the critical density pi’ is larger than that in the previous model. 
In the last model we avoid double occupancy by introducing an exchange operator 

through which an A-type car can be transformed to that of a D-type and vice versa. The 
exchange operators LAD and LDA are defined by 

LDA = P I  [a!-l,d;-la - djLludi-~cz aja-laim-~ 

(19) 
ia I ’  

LAD = PZ k!u-lai,z-~ - a,,_lain-l t 1 ’  d8-Iedi-~e . 
i.z 
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These evolution operators simulate the situation that whenever a lattice site is  already 
occupied the corresponding cars turn off with the exchanEe rate-&. 

As a result additional terms occur in (13) for the symmetrized model: 

(20) 
ud=v1[1 - P + h P d l [ l - P a l - " l ( 1 - P a ) P a + p Z ( 1  -Pd)Pa 

Ua = Uz[l - P + PaPdl[l - Pdl + Pl(1 - PdPd - &Z(I - Pd)Pd. 

In the case of the right-before-left model the first parts of the last equation should be replaced 
by (17). The corresponding equations can be solved exactly. Here we present an estimation 
of the average velocity in the limit " I o  < 1 with 01 = oz = U and p1 = "2 = p. The 
critical concentration is given by 

1 
if - < f < 1 "1 2 

In this paper we have considered the simplest realization of two type particle hopping 
processes on a lattice using an analytical approach. The particles denoted as cars can only 
jump from lattice sites if the corresponding site is not occupied by any other car. The 
dynamics of this problem is realized in terms of Pauli operators. Depending on the total 
car density we find a jamming transition at a critical concentration of cars. The method can 
also be used to discuss higher-order results or can be considered as the starting point for a 
path integral representation for the problem discussed here. 
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